Sharp inequality of three point Gauss—Legendre quadrature rule
نویسندگان
چکیده
منابع مشابه
A three point quadrature rule for functions of bounded variation and applications
A three point quadrature rule approximating the Riemann integral for a function of bounded variation f by a linear combination with real coef cients of the values f (a) ; f (x) and f (b) with x 2 [a; b] whose sum equalizes b a is given. Applications for special means inequalities and in establishing a priory error bounds for the approximation of selfadjoint operators in Hilbert spaces by spectr...
متن کاملTwo Point Gauss–legendre Quadrature Rule for Riemann–stieltjes Integrals
In order to approximate the Riemann–Stieltjes integral ∫ b a f (t) dg (t) by 2–point Gaussian quadrature rule, we introduce the quadrature rule ∫ 1 −1 f (t) dg (t) ≈ Af ( − √ 3 3 ) + Bf (√ 3 3 ) , for suitable choice of A and B. Error estimates for this approximation under various assumptions for the functions involved are provided as well.
متن کاملThree error bounds for the Simpson quadrature rule
Three new error bounds are presented for the well-known Simpson quadrature rule in ] , [ 1 b a L and ] , [ b a L spaces.
متن کاملA sharp weighted Wirtinger inequality
We obtain a sharp estimate for the best constant C > 0 in the Wirtinger type inequality
متن کاملThe Sharp Energy-capacity Inequality
Using the Oh–Schwarz spectral invariants and some arguments of Frauenfelder, Ginzburg, and Schlenk, we show that the π1-sensitive Hofer– Zehnder capacity of any subset of a closed symplectic manifold is less than or equal to its displacement energy. This estimate is sharp, and implies some new extensions of the Non-Squeezing Theorem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proyecciones (Antofagasta)
سال: 2020
ISSN: 0717-6279
DOI: 10.22199/issn.0717-6279-2020-03-0039